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The world’s first full-stack quantum computing 
company.

16-qubit QPUs currently operating on our 
cloud platform

100+ employees w/ $119M raised

Home of Fab-1, the world’s first commercial 
quantum integrated circuit fab

Located in Berkeley, Calif. (R&D Lab) and 
Fremont, Calif. 



Transistor scaling Returns to 
parallelization

Energy consumption

Classical computers have fundamental limits

Economic limits with 10bn for 
next node fab

Ultimate single-atom limits

Amdahl’s law Exascale computing project 
has its own power plant

Power density can melt chips



Why build a quantum computer? 

Quantum computing power* scales exponentially with qubits
N bits can exactly simulate log N qubits

10 Qubits

Commodore 64

60 Qubits

Entire Global Cloud 

30 Qubits

AWS M4 Instance

1 Million x Commodore 64 1 Billion x 
(1 Million x Commodore 64)

This compute unit....

can exactly simulate:

* More precisely ...



Why build a quantum computer? 

For N qubits every time step (~100ns*) is an exponentially large 2N x 2N complex matrix multiplication

* for superconducting qubit systems

Crucial details: 
- limited number of multiplications (hundreds to thousands) due to noise
- not arbitrary matrices (need to be easily constructed on a QC)
- small I/O, poly(N)-bits in and N-bits out

2N x 2N 

The “big-memory small pipe” mental model for quantum computing

N qubits

poly(N) bits N bits





Qubit States

Qubit:

Kets:

Measurement yields:

- ‘0’ with probability 

- ‘1’ with probability
                            



Qubit States

Qubit:

Kets:

Bras

Brackets
(Inner Product)



Qubit States

Qubit:

Kets:

Bras

Normalization:



Qubit States

Qubit:

Kets:

Measurement yields:

- ‘0’ with probability 

- ‘1’ with probability
                            



Qubit States: Bloch Sphere



Qubit States: Multi-qubit states

Multiple qubits:

Tensor product:

Vector form:



Qubit States: Multi-qubit states

Associative:

Not commutative:



Qubit Operations

Unitary Operators:
(Gates)

Preserve inner 
product:



Bits vs. Probabilistic Bits vs. Qubits
QubitsBits Probabilistic Bits

State (single unit) Bit Real vector



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector

Probability of 0 Probability of 1

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

|⍺|2 = Probability of 0 |𝛽|2 = Probability of 1

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

...

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector
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QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector)

Probability of bitstring x

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

|⍺x|
2 = Probability of bitstring x

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Operations Boolean Logic Stochastic Matrices

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Operations Boolean Logic Stochastic Matrices Unitary Matrices
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QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Operations Boolean Logic Stochastic Matrices Unitary Matrices

Component Ops Boolean Gates Tensor products of matrices Tensor products of matrices

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Operations Boolean Logic Stochastic Matrices Unitary Matrices

Component Ops Boolean Gates Tensor products of matrices Tensor products of matrices

Sampling

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Operations Boolean Logic Stochastic Matrices Unitary Matrices

Component Ops Boolean Gates Tensor products of matrices Tensor products of matrices

Sampling Born rule
|⍺x|

2 = Probability of bitstring x

Bits vs. Probabilistic Bits vs. Qubits



QubitsBits Probabilistic Bits

State (single unit) Bit Real vector Complex vector

State (multi-unit) Bitstring Prob. Distribution (stochastic vector) Wavefunction (complex vector)

Operations Boolean Logic Stochastic Matrices Unitary Matrices

Component Ops Boolean Gates Tensor products of matrices Tensor products of matrices

Sampling Born rule
Measurement

Bits vs. Probabilistic Bits vs. Qubits



Qubit Operations: Pauli gates



Qubit Operations: Identity gate



Qubit Operations: Pauli-X (NOT) gate



Qubit Operations: Pauli-Y gate



Qubit Operations: Pauli-Z gate



Qubit Operations: Hadamard gate



Qubit Operations: Hadamard gate



Qubit Operations: Multiple qubits

Examples:



Qubit Operations: Multiple qubits



Qubit Operations: Quantum Circuits

X

H

X



Quantum Programs

X

from pyquil import Program, get_qc
from pyquil.gates import X

p = Program(X(0))
qc = get_qc('9q-generic-qvm')
results = qc.run_and_measure(p, trials=10)[0]

print (results)

[1 1 1 1 1 1 1 1 1 1]



Quantum Programs

X

from pyquil import Program, get_qc
from pyquil.gates import X, MEASURE

p = Program()
p.declare('ro', 'BIT', 1)
p.inst(X(0))
p.inst(MEASURE(0, 'ro'))
p.wrap_in_numshots_loop(shots=10)

qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))

print (results)

[[1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]]



Quantum Programs

X

from pyquil import Program, get_qc
from pyquil.gates import X, MEASURE

p = Program()
p.declare('ro', 'BIT', 1)
p.inst(X(0))
p.inst(MEASURE(0, 'ro'))
p.wrap_in_numshots_loop(shots=10)

qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))

print (p)

DECLARE ro BIT[1]

X 0

MEASURE 0 ro[0]



Quantum Programs

H

X
from pyquil import Program, get_qc
from pyquil.gates import X, H, MEASURE

p = Program()
ro = p.declare('ro', 'BIT', 2)
p.inst(H(0))
p.inst(X(1))
p.inst(MEASURE(0, ro[0]))
p.inst(MEASURE(1, ro[1]))
p.wrap_in_numshots_loop(shots=10)

qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))

print (results)

[[0 1]

 [1 1]

 [0 1]

 [1 1]

 [1 1]

 [0 1]

 [1 1]

 [0 1]

 [0 1]

 [0 1]]



Quantum Programs

H

X

Z

Y

from pyquil import Program, get_qc
from pyquil.gates import X, Y, Z, H, MEASURE

p = Program()
ro = p.declare('ro', 'BIT', 2)
p += Program(H(0), X(1), Z(0), Y(1), MEASURE(0, ro[0]), MEASURE(1, ro[1]))
p.wrap_in_numshots_loop(shots=10)

qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))

print (results)

[[1 0]

 [1 0]

 [0 0]

 [1 0]

 [1 0]

 [0 0]

 [1 0]

 [1 0]

 [0 0]

 [0 0]]



Quantum Dice

Goal: Create an N-sided dice using a     
quantum computer.



Quantum Dice

Question: What gate would we use?



Quantum Dice

Question: How many qubits would we use?



Qubit Operations: Projections

the corresponding projection operator is given by the outer product

Project a ket/bra along a given ket/bra via its corresponding projection operator.

For some

e.g.



Qubit Operations: Controlled Operations

If qubit 1 is in the state |0> , apply I (identity) to qubit 0
Else if qubit 1 is in the state |1>, apply U to qubit 0

For example,



Entangled States

A state that cannot be written as a product state, i.e.

An example of a state that is not entangled:

An example of a state that is entangled:



Bell State via CNOT

H
CNOT

from pyquil import Program
from pyquil.gates import H, CNOT
from pyquil.api import WavefunctionSimulator

p = Program(H(1))
p += Program(CNOT(1, 0))
wfn = WavefunctionSimulator().wavefunction(p)

print (wfn)

(0.7071067812+0j)|00> + (0.7071067812+0j)|11>



Measurement in some arbitrary basis

Computational basis:

Measurement yields:

- ‘0’ with probability

- ‘1’ with probability
                            



Measurement in some arbitrary basis

Some other basis:

Measurement yields:

- 0’ with probability

- 1’ with probability
                            



Measurement in some arbitrary basis

Measurement of |𝛹> in some basis {U|0>, U|1>} 

= Measurement of U†|𝛹> in standard/computational basis {|0>, |1>} 



Quantum Teleportation

Goal: Teleport a Qubit!



Scenario:

- Alice is in possession of a qubit |𝛹>, which she would like to teleport
over to Bob, who is at some distant location.

Quantum Teleportation



Protocol:

- Create a Bell state, giving one qubit each to Alice and Bob

- Have Alice measure both her qubits in the Bell basis, and send her results to 
Bob

- Have Bob conditionally apply gates to his qubits, based off Alice’s 
measurements, to reconstruct the original qubit at his location

Quantum Teleportation



Quantum Teleportation



DEFCIRCUIT TELEPORT A q B:
# Bell pair
H        A
CNOT     A B

# Teleport
CNOT     q A
H        q
MEASURE  q [0]
MEASURE  A [1]

# Classically communicate measurements
JUMP-UNLESS @SKIP [1]
X B
LABEL @SKIP
JUMP-UNLESS @END [0]
Z B
LABEL @END

# If Alice’s qubits are 0 and 1
# and Bob’s is 5
TELEPORT 0 1 

Alice’s ancilla q

Alice A

Bob B

[0]

[1]

Quantum Teleportation



Classical Control in pyQuil

(1+0j)|11>

from pyquil import Program
from pyquil.gates import I, X
from pyquil.api import WavefunctionSimulator

p = Program(X(0))
ro = p.declare('ro', 'BIT', 1)
p.measure(0, ro[0]).if_then(ro[0], Program(X(1)), Program(I(1)))
wfn = WavefunctionSimulator().wavefunction(p)

print (wfn)



Classical Control in pyQuil

(1+0j)|00>

from pyquil import Program
from pyquil.gates import I, X
from pyquil.api import WavefunctionSimulator

p = Program(I(0))
ro = p.declare('ro', 'BIT', 1)
p.measure(0, ro[0]).if_then(ro[0], Program(X(1)), Program(I(1)))
wfn = WavefunctionSimulator().wavefunction(p)

print (wfn)



Deutsch’s Algorithm

Goal: Given a function f: {0, 1} -> {0, 1}, determine 
whether it is constant (i.e. f(0) = f(1)) or balanced (i.e. 
f(0) != f(1)) in the minimum number of steps, assuming 
an oracle/black-box for the function.



Deutsch’s Algorithm



Deutsch’s Algorithm



Deutsch’s Algorithm

(a) f(0) = f(1)

(b) f(0) != f(1)

Recall:



Goal: Given a function f: {0, 1}^n -> {0, 1}, find the 
bitstring x ϵ {0, 1}^n, such that f(x) = 1.

Grover’s Search Algorithm



Grover’s Search Algorithm

Assume a quantum black box



Grover’s Search Algorithm

Prepare the query register as

where 

(‘w’ is the bitstring to be found)



Grover’s Search Algorithm

Oracle/Blackbox



Grover’s Search Algorithm

Define a phase-shift operator

When |Ѱ> is the equal-superposition state (‘quantum dice’), we can write



Grover’s Search Algorithm

Inversion about the mean:



Grover’s Search Algorithm

Prepare target qubit as ZH|0> = HX|0> ~ ( |0> - |1>) to get phase ‘kick back’ from 
applying oracle/blackbox



Grover’s Search Algorithm

- Prepare the initial state

- Apply the Grover iterate O(√N) times



Mean value

|00 . . . 0 > | 11 . . . 1 >

| w >

Grover’s Search Algorithm



Mean value

|00 . . . 0 > | 11 . . . 1 >
| w >

Grover’s Search Algorithm



Mean value

|00 . . . 0 > | 11 . . . 1 >

| w >

Grover’s Search Algorithm



Variational Quantum Eigensolver

Goal: Find the ground state of some Hamiltonian, H.

Procedure:

- Prepare some trial state |𝛹; 𝜃>

- Calculate expectation value  <𝛹; 𝜃|H|𝛹; 𝜃>

- Find the values of 𝜃 that will minimize the above



Goal: Given binary constraints over bitstrings

Find the bitstring that maximizes the objective function

Quantum Approximate Optimization Algorithm



Quantum Approximate Optimization Algorithm

MaxCut problem:

Given some undirected graph with arbitrary (non-negative) weights, find 
a partition                of the graph’s nodes (a ‘cut’ of the graph) that 
maximizes the weights along the cut



Quantum Approximate Optimization Algorithm



Quantum Approximate Optimization Algorithm

MaxCut for simple 5-node 
graph with all weights 
either 0 or 1.

MaxCut solution (as a bitstring):

01001 OR   10110

On a quantum computer:

(ideally)



Quantum Approximate Optimization Algorithm

MaxCut objective function:

On a quantum computer:
MaxCut for simple 5-node 
graph with all weights 
either 0 or 1.



- Prepare equal-superposition as initial state

- Define the ‘mixer’ operator 

- Define the ‘cost’ operator 

- Apply         and 
sample/measure

Quantum Approximate Optimization Algorithm



Quantum Approximate Optimization Algorithm

import numpy as np
from pyquil import Program
from pyquil.api import WavefunctionSimulator
from pyquil.paulis import sI, sX, sY, sZ, exponential_map

angle = np.pi / 8 
pauli_sum = sX(1) * sY(0) + sI(1) * sY(0)

p = Program()
for ps in pauli_sum:
    p += exponential_map(ps)(angle)
    
wfn_sim = WavefunctionSimulator()
wfn = wfn_sim.wavefunction(p)

print (wfn)

(0.8535533906+0j)|00> + (0.3535533906+0j)|01> + (-0.1464466094+0j)|10> + (0.3535533906+0j)|11>



Noise and Quantum Computation

‘Pure’ quantum states

evolve via Unitary operations



Noise and Quantum Computation

More generally, quantum states are described by “Density Matrix”

evolving via Kraus operations (“quantum channel”)



Noise and Quantum Computation

For example,

Not to be confused with



Example of quantum channel/set of Kraus operators/noise model:

Quantum state passing through the channel/experiencing the noise 
transforms to:

Noise and Quantum Computation



Thanks, and keep in touch!

sohaib@rigetti.com

Join our Slack channel: rigetti-forest.slack.com

mailto:sohaib@rigetti.com

