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The goal of this session is to prove that the memory in an open system with
Ising-like interactions can always be simulated classically. This will allow us to
practice the calculation of process matrices for a physically motivated scenario.

The model is a chain of n two-level systems (qubits) that interact according
to the Hamiltonian

H(J) = −J
n−1∑
j=1

ZjZj+1, (1)

where the operator Zj acts as the Pauli matrix σz =
(

1 0
0 −1

)
on the j-th

qubit and as the identity on the other qubits, while J is a coupling constant
with the dimension of energy. We treat the first qubit as the system and the
rest as the environment. We consider the general case of N time steps, namely
of N possible sequential operations on the first qubit, separated by arbitrary
times t1, t2, . . . , tN . In other words, the first operation takes place at times t1,
the second at time t1 + t2, and so on. (Note, the number N of time steps is
unrelated to the number n of qubits.)

The task is to construct the general process matrix WJ, ψ(t1, . . . , tN ) and
show that it can be decomposed as a sum of positive product processes. To
make sure we know what we are looking for, recall that for each time step
j we have a pair of Hilbert-Schmidt spaces, AjIO ≡ AjI ⊗ AjO, corresponding
to input and output of the local operation. The output of the last time step
can be taken to be trivial, because the causal order conditions imply that the
process matrix has to be identity there (the output of the last operation cannot
influence any other time step). Therefore, our process matrix lives in the space
A1
IO . . . A

N−1
IO ANI (where we omit the tensor product symbol). Each AjI and A

j
O

is a single-qubit space, so the process matrix corresponds to a 2N − 1-qubit
state, which is a 22N−1 × 22N−1 matrix.

The simplifying feature of the Hamiltonian (1) is that it is diagonal in the
computational basis. To make things easier to write, we label |1〉, | − 1〉 the
basis states for a single qubit, so that σz|µ〉 = µ|µ〉, µ = ±1. The eigenbasis of
H is then given by the product states |~µ〉 ≡ |µ1, . . . , µn〉:

H(J)|~µ〉 = −J

n−1∑
j=1

µjµj+1

 |~µ〉. (2)

Note that the coupling J simply sets a scale for the time evolution. In-
deed, the unitary evolution for a time t is e−iH(J)t = e

iJt
∑n−1

j=1
ZjZj+1

=

1



e
it̃
∑n−1

j=1
ZjZj+1

, with t̃ ≡ Jt. This extends to the whole multi-time process:
WJ, ψ(t1, . . . , tN ) = W1, ψ(t̃1, . . . , t̃N ). Therefore, we set J = 1 (and stop writ-
ing it) and work with dimensionless time steps, which we write again as tj ,
dropping the tilde for simplicity.

We can solve the problem in steps. The task is to write the object at each
step in the energy eigenbasis.

1. Write the time evolution operator U(t) = e−iHt. This is a unitary operator
acting on n qubits. It can help to write explicitly the systems on which
it acts: UA1E2...En(t), where A1 denotes the system qubit and E2, . . . , En

denote the environment qubits.

2. Compose two such evolutions for the environment qubits 2, . . . n. This
should give us a unitary operator

UA
1A2E2...En

(t1, t2) = UA
2E2...En

(t2)UA
1E2...En

(t1)

that acts on n+1 qubits. More precisely, the inputs to this unitary are the
n initial qubits (system and environment), plus the output of the operation
performed at time t1. The outputs are all the qubits after time t2 and the
input to the system operation at time t1.

3. Iterate the step above to write the unitary

UA
1A2...ANE2...En

(t1, . . . tN ) = UA
NE2...En

(tN ) · · ·UA
1E2...En

(t1)

for N time steps.

4. Apply the above unitary to the initial system-environment state
|ψ〉A1E2...En =

∑
~µ ψ~µ|~µ〉A

1E2...En , to obtain the isometry

V A
1A2...ANE2...En

ψ (t1, . . . tN )

= UA
1A2...ANE2...En

(t1, . . . tN )|ψ〉A
1E2...En

.

Note that the notation here is slightly imprecise, as V and U have the
same labels, although they have different dimension. Indeed, U has an
input and an output space for each of its labels, while V has inputs only
for A2, . . . AN , while for A1, E2, . . . EN it only has outputs. Physically,
this isometry takes as input the outputs of each local operation on the
system, while its outputs are the inputs to all local operations, plus the
final environment qubits.

5. Write the Choi representation of the isometry above, [[V ]] ≡ |V 〉〉〈〈V |.
(Of course, it is convenient to use the eigenbasis of the Hamiltonian
to define the Choi-Jamiołkowski isomorphism.) Making the distinction
between inputs and outputs explicit, the matrix [[V ]] lives in the space
A1
IO . . . A

N−1
IO ANI E

2
I . . . E

n
I .

6. The process matrix for the system alone is obtained by tracing out the
environment:

W
A1

IO...A
N−1
IO

AN
I

ψ (t1, . . . tN ) = trE2
I
...En

I
[[Vψ(t1, . . . tN )]]A

1
IO...A

N−1
IO

AN
I E

2
I ...E

n
I .
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7. Finally, we have to show thatWA1
IO...A

N−1
IO

AN
I

ψ (t1, . . . tN ) is a sum of product
matrices for any initial state |ψ〉 and for arbitrary time steps t1, . . . tN .
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