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1 States, measurements, transformations
1.1 Closed systems
Pure states in quantum theory are represented as elements of a complex Hil-
bert space, denoted as “kets”: |ψ〉 ∈ H. A Hilbert spaces is a vector space
endowed with a scalar product. We will restrict to finite-dimensional Hilbert
space for simplicity, although almost everything extends to infinite dimension,
modulo appropriate definitions.

Given a Hilbert space H, its dual space H∗ is defined as the space of
complex-valued linear functionals over H. A functional is denoted as a “bra”:
〈φ| ∈ H∗; its action on a ket is denoted as 〈φ|ψ〉 ∈ C. The scalar product
in H induces an isomorphism between H and H∗: 〈φ| ≡ |φ〉†. In terms of an
orthonormal basis |ej〉, and the corresponding dual basis 〈ei|ej〉 = δij , a ket
|φ〉 =

∑
j φ

j |ej〉 corresponds to the bra 〈φ| =
∑
j(φj)∗〈ej |. The action of a bra

on a ket is, in terms of components, 〈φ|ψ〉 =
∑
j(φj)∗ψj , which corresponds to

the scalar product between states |ψ〉 and |φ〉.

Notation. ψj denotes a complex number, not a vector. It represents the
j-th component of a ket in a given basis, ψj = 〈ej |ψ〉 (similarly for bra
components). Vectors in Hilbert space (or dual space) are always denoted
as kets |ψ〉 (or bras 〈φ|).

Physically, a “bra” represents a measurement that yields a particular out-
come. The isomorphism between bras and kets means that, for each state |φ〉,
there exists a measurement that can be interpreted as the question “is the sys-
tem in state |φ〉?”. The probability for this question to have a positive answer,
given the system was in state |ψ〉 when measured, is given by

P (φ|ψ) = |〈φ|ψ〉|2

〈φ|φ〉〈ψ|ψ〉
. (1)

We usually work with normalised states, 〈φ|φ〉 = 〈ψ|ψ〉 = 1, so that the denom-
inator can be omitted. In the following, we will assume states to be normalised
unless otherwise stated. The complex number 〈φ|ψ〉 is called probability amp-
litude.
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The presentation above takes “ket” states as the starting point and derives
“bra” measurements as their duals. The reverse direction is possible: take as a
starting point the space of elementary yes/no questions, making up the Hilbert
space of bras, and define ket states as linear functionals over this space. This
duality between “how something can be” and “what questions can be asked”
will be a recurring theme in these lectures.

Multiple systems. The composition of systems in quantum mechanics is
described by the tensor product. Given two Hilbert spaces HA, HB , describing
the possible states of two different systems (e.g., the internal states of two
atoms), all possible states of the pair of systems live in the product Hilbert
space HA⊗HB . If {|ej〉}dA

j=1, {|fk〉}
dB

k=1 are orthonormal bases of the two spaces,

{|ej〉 ⊗ |fk〉}dA

j=1
dB

k=1
is a basis of the joint space. States of the form |ψ1〉A⊗|ψ2〉B

are called product states; states that are not product, |ψ〉AB =
∑
jk ψ

jk|ej〉 ⊗
|fk〉, ψjk 6= ψj1ψ

k
2 , are called entangled.

Notation. We often simplify the notation for basis states as |ej〉 ≡ |j〉.

The dual space of (and the scalar product in) the composite space is defined
component-wise:(

〈φ1|A ⊗ 〈φ2|B
) (
|ψ1〉A ⊗ |ψ2〉B

)
:= 〈φ1|ψ1〉〈φ2|ψ2〉.

This extends to entangled states by linearity.

Notation. The superscripts A,B, . . . typically refer to the space in which
the object (here, bra or ket) is defined, while it does not distinguish objects
from each other. This means that an expression like |ψ〉A⊗|ψ〉B represents
the tensor product of two copies of the same state |ψ〉. The tensor product
symbol and the system labels are sometimes omitted, when they can be
inferred from context: |ψ〉A ⊗ |φ〉B ≡ |ψ〉A|φ〉B ≡ |ψ〉|φ〉.

We will also use the partial scalar product:

〈φ|B
(
|ψ1〉A ⊗ |ψ2〉B

)
≡
(
1A ⊗ 〈φ|B

) (
|ψ1〉A ⊗ |ψ2〉B

)
= |ψ1〉A〈φ|ψ2〉,

where 1 denotes the identity transformation, 1|ψ〉 = |ψ〉.
A linear transformation (or map, or operator) L : HA → HB takes ele-

ments from a Hilbert space HA to another Hilbert space HB , with the property

L (α|ψ1〉+ |ψ2〉) = αL|ψ1〉+ L|ψ2〉

for every α ∈ C and |ψ1〉, |ψ2〉 ∈ HA. We use the same symbol to denote an oper-
tor L and its dual L : HB∗ → HA∗, defined as L

(
〈φ|B

)
|ψ〉A := 〈φ|B

(
L|ψ〉A

)
≡

〈φ|L|ψ〉 (i.e., it acts on the bras “from the right”). Matrix elements are the
components Lij = 〈i|L|j〉 for some chosen bases

{
|i〉B

}
i
,
{
|j〉A

}
j
. The adjoint

L† : HB → HA is defined as L†|φ〉 := (〈φ|L)† and has matrix elements equal to
the conjugate transpose of the original operator: (L†)ji =

(
Lij
)∗.

There is a natural isomorphism between the space of linear operators, de-
noted L

(
HA,HB

)
and the product of the dual of the input space with the
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output space, HB ⊗ HA∗. This is implicit in the bra-ket notation; for ex-
ample, the linear transformation Lφ1→φ2 |ψ〉A := |φ2〉B〈φ1|ψ〉 corresponds to
|φ2〉A ⊗ 〈φ1|B ≡ |φ2〉A〈φ1|B . The space of operators of a space onto itself is
denoted L (H) ≡ L (H,H) ≡ H⊗H∗.

Here are some relevant definitions and examples of linear operators.

• Every pure state |ψ〉 ∈ H can be seen as a map C → H, acting as C 3
α 7→ α|ψ〉.

• Bras are, by definition, linear maps H → C.

• An operator U is unitary if U†U = UU† = 1. (These operators are
invertible and preserve the scalar product). The dimension of input and
output spaces of a unitary operator must be equal.

• V is an isometry if V †V = 1. (These are the operators that preserve the
scalar product, without necessarily being invertible, in the sense that they
might not have a right inverse.) The output dimension of an isometry
must be larger or equal to the input dimension. Unitaries and ket states
are particular examples of isometries, while bras are not.

• A projector is a self-adjoint operator, Π† = Π ∈ L(H), such that Π2 = Π.
As a special case, |ψ〉〈ψ| is a rank-1 projector for any normalised state
〈ψ|ψ〉 = 1. We use the short-hand notation [ψ] ≡ |ψ〉〈ψ|.

• An operator L ∈ L(H) is called positive semidefinite if 〈ψ|L|ψ〉 ≥ 0 for
every |ψ〉 ∈ H. We express this property as L ≥ 0. L is positive definite
if 〈ψ|L|ψ〉 > 0 for all |ψ〉, in which case we write L > 0. Projectors are
positive semidefinite operators; the only positive definite projector is 1.

• The trace of an operator L with equal input and output dimensions is
the sum of its diagonal elements, trL :=

∑
j 〈j|L|j〉. The partial trace of

an operator on a composite system is defined in terms of the partial scalar
product: trB LAB :=

∑
j 〈j|BLAB |j〉B .

Physically, isometries represent the most general way to transform a system so
that pure states are mapped to pure states, and such that the transformation can
be performed with probability 1. Unitaries are the particualar case where the
inverse, U† is also an isometry (and thus also a deterministic transformation).
The time evolution of a closed system, as well as symmetry transformations
(such as rotations or translations), are typically described as unitaries. An
example of an isometry that is not a unitary is a transformation where a system
is transformed in a reversible why, while some extra system is appended to it:

V AB = UA ⊗ |ψ〉B .

Notation. A single superscript on a linear operator usually denotes its
output space. Bras are an exception, as we label them with the Hilbert
space they act on. This notation can lead to some ambiguity when input
and output spaces are different. Context and appropriate descriptions
should clarify such ambiguities. The notation LA→B can be used if extra
clarity is needed to specify input and output space.
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A projection-valued measure (POM) is a complete set of projectors,
{Πj}j with

∑
j Πj = 1. Physically, it represents a measurement procedure,

with j labelling the measurement outcome. Given a system prepared in a pure
state |ψ〉, the probability to observe the outcome j is

P (j|ψ) = 〈ψ|Πj |ψ〉. (2)

A particular case is a binary measure {[ψ] ,1− [ψ]}, for which one recovers
Eq.(1).

Jargon. Ameasure typically refers to a mathematical construction, while
measurement refers to a physical procedure.

Note that the formulas for probabilities (1), (2) make no reference to what
happens to the state after the measurement. As we will see below, this de-
pends on a more complete description of the measurement procedure and is not
uniquely defined by the POM. Nonetheless, “projective measurement” usually
refers to a procedure where, upon observing an outcome corresponding to a
projector Π, the state is transformed as

|ψ〉 7→ Π|ψ〉. (3)

Several textbooks introduce Eq. (4) as a postulate of quantum mechan-
ics. However, it turns out that state update can be derived from a quantum
description of measurements. Furthermore, many sources renormalise the post-
measurement state: |ψ〉 7→ Π|ψ〉

〈ψ|Π|ψ〉 , making state update a non-linear trans-
formation. We will avoid this here, and interpret the sub-normalised state Π|ψ〉
as the result of an operation that does not happen with unit probability. The
norm of the post-measurement state, ‖Π|ψ〉‖ = 〈ψ|Π|ψ〉, represents the prob-
ability for the transformation to succeed. This is convenient when describing
multiple measurements: upon observing subsequent outcomes i, j, the system
is transformed as

|ψ〉 7→ ΠjΠi|ψ〉. (4)

The probability for this two happen, i.e., the joint probability for observing i,
j, is given by

P (i, j|ψ) = ‖ΠjΠi|ψ〉‖ = 〈ψ|ΠiΠjΠi|ψ〉. (5)

1.2 Open systems
The space of linear operators L (H) inherits a scalar product from the scalar
product on H. This is defined as

(A,B)HS := trA†B, (6)

ans is called the Hilbert-Schimdt product. We will refer to a space endowed with
this product as Hilbert-Schimdt space. We will use a system’s label to refer to
the corresponding Hilbert-Schmidt space, L

(
HA
)
≡ A.

Hilbert-Schmidt spaces are used to represent systems of which we have par-
tial information. The structure of states-measurements-transformations based
on Hilbert-Schmidt space is similar to that on Hilbert space.
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A state of is a positive semidefinite operator ρ ≥ 0 (ρ is often called density
matrix, or density operator). A state is called pure if ρ = [ψ] for some ket |ψ〉.
It is called mixed otherwise. Mixed states can arise in two different ways. If we
have a system that can be in one of several possible pure states |ψ1〉, . . . , |ψn〉
with probabilities p1, . . . , pn, we describe it as the convex mixture

ρ =
∑
j

pj [ψj ] ,

with pj ≥ 0,
∑
j pj = 1. As a second possibility, given a composite system in a

pure state |ψ〉AB , the reduced state is defined as

ρA := trB [ψ]AB .

Unless otherwise stated, our density matrices will be normalised, tr ρ = 1. A
sub-normalised density matrix physically describes a procedure that prepares
the state with probability tr ρ.

An effect e on a system A is a real-valued linear functional, with 0 ≤
e(ρ) ≤ tr ρ. It describes an outcome of a measurement on A, where e(ρ) is the
probability for the outcome to be observed. Effects live in the dual linear space
to A, A∗ ≡ L(H)∗. The Hilbert-Schmidt scalar product induces an isomorphism
between A and A∗: every effect e ∈ A∗ corresponds to a positive semidefinite
operator with 0 ≤ E ≤ 1 such that

e(ρ) = trEρ. (7)

Note that every positive operator is also self-adjoint, so that trEρ = trE†ρ =
(E, ρ)HS.

As with pure states, it is possible to start with measurements as the primary
concept and derive states. One can start from the space of effects, represented
as positive, sub-unity operators 0 ≤ E ≤ 1, and introduce states as linear
functionals on effects, E 7→ ρ(E), with 0 ≤ ρ(E) ≤ 1. Coming from this dir-
ection, effect operators represent the possible outcomes that can be obtained
when measuring a system, while states are the possible ways to assign probabil-
ities to measurement outcomes. We will typically identify any effect e with the
corresponding operator E.

A Positive-Operator-Valued Measure (POVM), is a set of positive
semi-definite operators {Ej}j , Ej ≥ 0, with

∑
j Ej = 1. This represents a

measurement procedure with outcomes labelled by j. The probability to observe
outcome j, given that the system was initially in state ρ, is

P (j|ρ) = trEjρ. (8)

The condition
∑
j Ej = 1 ensures that at least one outcome is observed, i.e.,∑

j P (j|ρ) = 1. Note that, for a pure state ρ = [ψ] and a POM Ej = Πj ,
the probability rule (8) reduces to (2): tr Πj [ψ] = 〈ψ|Πj |ψ〉. We will refer to
the probability rule (8) as the Born rule, although sometimes the name is
associated with the particular cases (2) or (1).

Just as for pure states, composite systems are described by tensor products.
A product state ρA1 ⊗ ρB2 describes two uncorrelated systems, while a product
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effect EAi ⊗EBj describes two independent measurements. Indeed, uncorrelated
states give uncorrelated outcomes when measured independently:

P (i, j|ρA1 ⊗ ρB2 ) = (trEiρ1) (trEjρ2) = P (i|ρ1)P (j|ρ2). (9)

For non-product states, we distinguish separable states, which can be written
as convex mixtures of product states, ρAB =

∑
pjρ

A
j ⊗ σBj , pj ≥ 0,

∑
j pj = 1,

and entangled states, which cannot be decomposed in this way.
Linear transformationsM : A→ B on operator spaces are sometimes called

superoperators, or more simply maps. Linearity means

M (αρ+ σ) = αM (ρ) +M (σ)

for any number α and operators ρ, σ. Maps can also be tensored:(
MA ⊗MB

)
(ρ⊗ σ) :=MA (ρ)⊗MB (σ) ,

with the action on non-product states defined by linearity.

Notation. As with Hilbert-space transformations, a superscript on a
map typically refers to the output space. The notation MA→B can be
used for extra clarity. However, we often omit superscripts to avoid clut-
tering.

The composition of maps is denoted asM1 ◦M2 (ρ) :=M1 (M2 (ρ)).
Some examples and relevant definitions of maps follow.

• Every state ρA defines a map R→ A, defined as q 7→ qρ for any q ∈ R.

• Effects are by definition linear maps A→ R. In terms of effect operators,
ρA 7→ trEρ for any ρ ∈ A. An example is the trace operator, dual to the
identity operator, ρ 7→ tr ρ = tr1ρ.

• Any linear transformation on Hilbert space, V : HA → HB , induces a map
V : A → B, defined as V(ρ) = V ρV †. The maps induced by projectors,
unitaries, isometries, etc., retain their names when taken as superperators.
Context will tell whether they should be thought of as acting on Hilbert
space or on operators.

• A map is called positive if it preserves positive semidefiniteness: M(ρ) ≥
0 for all ρ ≥ 0.

• A mapMA is called completely positive (CP) ifMA ⊗IB is positive
when extended to an arbitrary system B, where I is the identity map,
I(ρ) = ρ.

• A map T is trace preserving if tr T (ρ) = tr ρ. Completely positive and
trace preserving (CPTP) maps are also called quantum channels.

Physical transformation of mixed states are described by superoperators.
CPTP maps (quantum channels) are the most general transformations that
can be performed with unit probability. Isomtetries and unitaries are special
examples of quantum channels. More general transformations include
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• partial knowledge of the transformation performed: if one of a set {Vj}j
takes place with probability pj , the corresponding quantum channel is

T (ρ) =
∑
j

pjVjρV
†
j ;

• discarding a part of a system:

T A
(
ρAB

)
= trB

[
UABρAB(UAB)†

]
,

where U is a joint unitary acting on A and B;

• interaction of the system with an environment,

T A
(
ρA
)

= trB
[
UABρA ⊗ σB(UAB)†

]
,

where σ is a fixed initial state of the environment.

Non-deterministic transformations, which might take place with less-than-
unit probability, are described by CP, trace non-increasing maps, also called
quantum operations1. These describe the transformation of a system res-
ulting from a particular outcome of a measurement procedure. A particular
example is a projective measurement,

ρ 7→ ΠρΠ.

Other sources renormalise the post-measurement state, ρ 7→ M(ρ)
trM(ρ) . Instead, as

for pure states, here we keep sub-normalised states, with trM(ρ) ≤ 1 denoting
the probability for the transformation to take place.

Pictures. We usually work within the Schrödinger picture, where states
are transformed but effects stay fixed. Equivalently, one could keep
states fixed and transform effects, in the Heisenberg picture. Heisenberg
and Schrödinger’s picture maps are each other’s adjoints relative to the
Hilbert-Schmidt scalar product: tr [EM(ρ)] = tr

[
M†(E) ρ

]
, ensuring

that probabilities are independent of the picture used. For a map induced
by a Hilbert-space transformation, M(ρ) = MρM† in the Schrödinger
picture, the Heisenberg-picture adjoint isM†(E) = M†EM .

A quantum instrument describes a general measurement procedure, which
also specifies how the system is transformed after the measurement. An instru-
ment is defined as a collection of CP maps that sum up to a CPTP map:
J = {Mj}j such that tr

∑
jMj (ρ) = tr ρ. The probability to observe outcome

j, given a system in state ρ, is

P (j|ρ) = trMj (ρ) .

We see that each instrument defines a POVM, with the individual effects defined
as ej(ρ) = trMj (ρ). However, a POVM does not correspond to a unique in-
strument, as measurment procedures might different in state transformation but

1We will often just call quantum operations CP maps, implicitly assuming the trace non-
increasing condition, trM(ρ) ≤ tr ρ.
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have equal outcome probabilities. Indeed, given a CPTP map T , the instru-
ments J = {Mj}j and J ′ = {T ◦Mj}j have the same outcome probabilities
for any state, trMj (ρ) = tr T ◦Mj (ρ).

When more measurements are performed in a sequence, the joint probabil-
ities for successive outcomes i, j are given by

P (i, j|ρ) = trMj ◦Mi (ρ) . (10)

2 More on channels and operations
2.1 Kraus representation of quantum opertations
There is a useful way to represent CP maps, wihch enables us to better link
transformations on pure and mixed states. The following result holds:

A map M : A→ B is completely positive if and only if there exists a set of
operators Kk : HA → HB, k = 1, . . . , r, such that

M(ρ) =
r∑

k=1
KkρK

†
k. (11)

The smallest r from which this is possible is called the Kraus rank (or rank, for
short) of the mapM.

Given two mapsM, N , with respective Kraus operators {Kk}k, {Hh}h, the
composed mapM◦N has Kraus operators

{
K̃k, h

}
k, h

= {KkHh}k, h. This is
useful, for example, if we apply the operation on an initially pure state [ψ]. The
joint probability for obtaining first N , thenM as two sequential operations is
given by

trM◦N ([ψ]) =
∑
kh

trKkHh|ψ〉〈ψ|H†hK
†
k

=
∑
khj

〈j|KkHh|ψ〉〈ψ|H†hK
†
k|j〉 =

∑
khj

|〈j|KkHh|ψ〉|2 ,

where {|j〉}j is a basis of the final Hilbert space. Therefore we can interpret
the complex numbers 〈j|KkHh|ψ〉 as probability amplitudes corresponding to
(unobserved) measurements h, k, j. This means that we can go through the
calculation in Hilbert space, instead of the larger (and often more cumbersome)
Hilbert-Schmidt space, to obtain probability amplitudes, and only turn to prob-
abilties at the very end, by taking the modulus square of the amplitudes and
summing over unobserved outcomes. Note that this interpretation extends the
standard notion of probability amplitudes, which is defined only for projective
operators.

A CP map is trace preserving if its Kraus operators satisfy∑
k

K†kKk = 1. (12)

Therefore, an instrument J = {Mj}j is equivalently defined as a set of Kraus
operators {Kjk}jk such that ∑

jk

K†jkKjk = 1,
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with the probability for outcome j given by

P (j|ρ) =
∑
k

trKjkρK
†
jk.

This expression also gives us a direct link between an instrument and the cor-
responding POVM. For an instrument with Kraus operators {Kjk}jk, the cor-
responding POVM elements are Ej =

∑
kK
†
jkKjk.

2.2 The church of the larger Hilbert space
It is intuitive that taking a part of a closed system, while ignoring the rest,
results in an open system. An important result in quantum theory is that the
opposite is also true: every open system or process can be seen as the restriction
to a part of a larger system.

State purification. For every density matrix ρ ∈ A, there is a Hilbert space
HB and a pure state |ψ〉 ∈ HA ⊗HB such that

ρA = trB [ψ]AB .

The state |ψ〉 is called a purification of ρ. Each desitiy matrix has multiple
distinct purifications. A canonical one can be constructed in the following way:
write ρ in its diagonal basis,

ρA =
∑
j

rj [j]A ,

with 0 ≤ rj ≤ 1. Take a Hilbert space HB with the same dimension of HA and
an arbitrary basis in it. It is easy to check that

|ψ〉AB =
∑
j

√
rj |j〉A|j〉B

is a purification of ρA. This construction tells us that an additional Hilbert
space HB of dimension at most equal to HA is sufficient to find a purification
of any state. Depending on the state, a smaller dimension of HB might work as
well. A purification using a larger Hilbert space is also always possible, although
it would not be minimal.

Steinspring’s dilation. Every CPTP map T : A → B can be expressed as
the interaction of the system with an environment, originally in a pure state
|ψ0〉, followed by discarding part of the system.

T (ρ) = trE′

[
UAE→BE

′
ρA ⊗ [ψ0]E (UAE→BE

′
)†
]
,

where U is unitary. Note that A and B can have arbitrary, different dimensions.
The only constraint is that the dimension of the initial combined system AE is
equal to that of the final system BE′.

A similar construction works for CP maps and more generally for instru-
ments. Physically, it means that every measurement procedure can be imple-
mented by preparing an environment in a pure state, let it interact reversiby
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with the system of interest, and then performing a projective measurement on
the environment. Formally, any CP mapM : A→ B can be represented as

M (ρ) = trE′

[
ΠE′

UAE→BE
′
ρA ⊗ [ψ0]E (UAE→BE

′
)†
]
,

where U is unitary and Π is a projector. Note that Π needs not to be rank
one; the limit case where Π = 1 corresponds to just discarding, rather than
measuring, the environment. Often one considers an environment divided in two
subsystems, E′ = E1 ⊗ E2, one of which is measured and the other discarded,
ΠE′ = Π̃E1 ⊗ 1E2 .

We can connect Stinespring’s dilation with the Kraus representation of CP
maps. By expanding the trace over E′ using a basis {|k〉}k, Stinespring’s dilation
reads

M (ρ) =
∑
k

〈k|E
′
[
ΠE′

UAE→BE
′
ρA ⊗ [ψ0]E (UAE→BE

′
)†
]
|k〉E

′

=
∑
k

〈k|E
′
ΠE′

[
UAE→BE

′
ρA ⊗ |ψ0〉〈ψ0|E(UAE→BE

′
)†
]

ΠE′
|k〉E

′
.

We recognise that this is a Kraus representation ofM, with operators

Kk = 〈k|E
′
ΠE′

UAE→BE
′
|ψ0〉E .

The Kraus decomposition for a CPTP map corresponds to the particular case
ΠE′ = 1E

′ , giving∑
k

K†kKk =
∑
k

〈ψ0|E(UAE→BE
′
)†|k〉〈k|E

′
UAE→BE

′
|ψ0〉E

= 〈ψ0|E(UAE→BE
′
)†UAE→BE

′
|ψ0〉E = 1.

2.3 State-channel duality
The last ingredient of this short overview is a convenient way to jump from
states to transformations and back, which also serves as a useful representation
of processes and operations. Stated in short, each transformation from a system
A to a system B corresponds to a bipartite state on the joint system A⊗B and
vice versa. There are several ways and different conventions to implement this
duality, each with its own pros and cons. We will adhere to the definitions used
in most of the literature concerned with indefinite causal order.

Let us look at pure states first. Take a linear transformation L : HA →
HB and fix a basis {|j〉}j ⊂ HA. L is mapped to the (non-normalised) state
|L〉〉 ∈ HA ⊗HB , defined as

|L〉〉AB :=
∑
j

|j〉A ⊗ LB |j〉.

Conversely, a state |ψ〉 ∈ HA ⊗ HB defines a linear transformation Lψ :
HA → HB , through the partial scalar product

LBψ |φ〉 := 〈φ∗|A|ψ〉AB ,
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where the complex conjugate 〈φ∗|A is defined, in the chosen basis, as

〈φ∗|A =
∑
j

〈j|A〈j|φ〉 =
∑
j

〈j|Aφj .

We will call |L〉〉 the “Choi vector” of the operator L, although this is not
standard terminology. It refers to the “Choi-Jamiołkowski isomorphism”, which
we will see later.

Looking at the matrix elements of L =
∑
ij L

ij |i〉〈j|, Lij = 〈i|L|j〉, we see
that the corresponding vector is

|L〉〉AB :=
∑
ij

Lij |j〉A|i〉B .

In other words, the vector corresponding to |L〉〉 is obtained by aligning the
rows of the matrix corresponding to L into a single row. We can also interpret
the isomorphism as arising from “flipping” the basis elements of the dual space
(H∗)A, 〈j|A 7→ |j〉A. Note that this is different from the canonical isomorphism
|ψ〉 = 〈ψ|†, which not only flips the basis elements but also takes the complex
conjugates of the components. Note also that the isomorphism |ψ〉 ↔ 〈ψ| is
basis independent, but not linear, while the correspondence L ↔ |L〉〉 is basis-
dependent, but linear.

To get a more physical interpretation, consider a maximally entangled state
on two copies of system A: |φ+〉 := 1√

dA

∑dA

j=1 |j〉|j〉 ≡
1√
dA
|1〉〉, where dA is

the dimension of HA. If we apply the transformation L on one side, leaving the
other unchanged, we obtain the Choi vector, up to normalisation:

1⊗ L|φ+〉 = 1√
dA
|L〉〉.

The correspondence more conventionally known as Choi-Jamiołkowski
(CJ) isomorphism relates CP maps to bipartite operators. It is defined as a
function C : L(A,B) 7→ A⊗B, which send a CP mapM : A→ B into

C (M)AB :=
∑
ij

|i〉〈j|A ⊗MB (|i〉〈j|) = IA ⊗MB ([[1]]) , (13)

with
[[1]] = |1〉〉〈〈1| =

∑
ij

|i〉〈j| ⊗ |i〉〈j|.

The operator C (M) ∈ A⊗B defined in this way is called the Choi operator, or
Choi matrix, of the map M. The reverse direction of the isomorphism relates
any operator M ∈ A⊗B to the map

MB
(
ρA
)

= trA
[(
ρA

T ⊗ 1B
)
MAB

]
, (14)

where T denotes transposition in the chosen basis.
The important property of this isomorphism is that a mapM is completely

positive if and only if C (M) is positive semidefinite. Furthermore, trace pre-
serving maps are characterised as those whose Choi operator satisfies

trB C (M)AB = 1A. (15)
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Generalised Born rule. To have a glimpse of how the CJ isomorphism can
be used, consider a bipartite communication scenario. Let us call Alice the
first party, who acts on some fixed initial state ρ and sends the output of her
operation to the second party, Bob, through a fixed channel T . Each of them
implements a quantum instrument and we want to know the probability for
Alice’s instrument to yield an outcome corresponding to operation M, and
Bob’s instruments to yield N . As we have seen earlier, this probability is given
by the formula

P (M,N|T , ρ) = trN ◦ T ◦M (ρ) . (16)

Let us now introduce the operators

M = C(M)T ,
N = C(N)T ,
T = C(T ).

Note that we transposed the Choi operators corresponding to the experimenter-
controlled maps. Let us further denote AI , AO the input and output spaces of
Alice’s operation, and BI , BO input and output for Bob. With a bit of work,
one can show that Eq. (16) is equivalent to

P (M,N|T , ρ) = tr
[(
MAIAO ⊗NBIBO

)
WAIAOBIBO

]
, (17)

WAIAOBIBO = ρAI ⊗ TAOBI ⊗ 1BO .

We see that the probability formula (17) is formally analogous to the Born rule
(8), where the role of the POVM element Ej is replaces by the (transpose) Choi
operators MAIAO , NBIBO of the local operation, while the role of the density
matrix ρ is replaced by the operator W , which we call process operator, or
process matrix.

The advantage of expression (17) is that Alice and Bob’s operations appear
in a symmetric position, with their causal relation encoded in the process matrix
W . A scenario where Bob acted before Alice would be described in the same
way, except for the different process matrix

WAIAOBIBO = TBOAI ⊗ 1AO ⊗ ρBI . (18)

The “generalised Born rule” (17) can be seen as the starting point for the study
of quantum causal structures.
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