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Spooky action at a distance in quantum mechanics

LUCIEN HARDY

In this article we give an introduction to non-locality in quantum mechanics. A simple

summary of the basic quantum mechanics required is given. Then we present Bell’ s proof of

quantu m non-locality and also we give simple presentations of more recent proofs. Finally

we consider the di� culties faced by experimentalists in testing quantum non-locality and

review some of the many experiments that have been performed.

1. Introduction

Quantum mechanics is the theory used to make predictions

about small systems such as atoms, electrons, photons, etc.

In fact, since bigger systems are made out of smaller

systems, quantum mechanics also applies to big systems as

well. Although the theory is very successful, it is cast in a

form which is very diŒerent from classical theories (such as

Newtonian mechanics and classical electromagnetism)

which preceded it. Classical theories point to a rather clear

picture of the world. However, the mathematical formula-

tion of quantum mechanics does not point towards a clear

picture of the world. There are many diŒerent ways of

interpreting it. All these interpretations have strange

features. In this article we will be interested in one such

strange feature, namely an apparent `spooky’ action at a

distance, otherwise known as non-locality, which seems to

be implied by the predictions of quantum mechanics.

Although hinted at by Einstein in 1927 [1], this feature was

® nally proven by Bell in 1964 [2]. We will go through Bell’ s

proof and also through simpler proofs which have

appeared more recently.

2. The story of Albert and Betty

Let us begin with a story. Albert and Betty are (non-

identical) twins who earn their living on stage entertaining

an audience of scientists every evening. Their stage-act

takes the following form. They come on the stage and

spend a few minutes conferring secretly together. Next, they

are taken to opposite ends of the stage and, by means of

screens, members of the audience ensure that they have

absolutely no way of communicating with each other. Two

members of the audience are nominated as questioners.

One stands next to Albert and the other stands next to

Betty. Each questioner takes a coin out of their pocket and

tosses it. If it comes up heads they ask the `colour’ question:

what is your favourite colour? The twin must answer green

or red. If the coin comes up tails then the questioner asks

the `food’ question: what is your favourite food? The twin

must answer carrots or peas. The scientists are careful to

ensure that neither twin knows which question is being

asked to the other twin. Records of the answers given by

the twins each evening are kept. Although the twins often

change their mind (so that, for example, on some evenings

Albert prefers peas and on others he prefers carrots), the

following patterns nevertheless emerge.

(a) On those evenings when both twins are asked the

colour question they sometimes (in 9% of cases)

both give the answer `green’ .

(b) If one twin is asked the colour question and gives

the answer `green’ and the other twin is asked the

food question then he/she will always give the

answer `peas’ . (Green for one twin implies peas for

the other.)

(c) On those evenings when both twins are asked the

food question it never happens that they both give

the answer `peas’ (one or both of them will answer

`carrots’ ).

The audience is astounded since they realize that this

should not be possible. To see why consider how the twins

might try to ensure that their answers conform to the above

rules. When they come out onto stage they do not know

what question they are later going to be asked. It would

seem that the best thing they can do is to agree between

themselves every evening how they are going to answer

each question if it is asked. On some evenings they must

both agree to answer green if the colour question is asked in
Author’ s address: The Clarendon Laboratory, Oxford U niversity, Oxford
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order to satisfy (a). Consider such an evening. We can

imagine that while conferring secretly, they each take out a

piece of paper. Under the heading `colour’ they each write

`green’ . Now Albert notices that since Betty is going to

answer green if asked the colour question, he must answer

peas if asked the food question to be sure of satisfying (b).

Thus he writes `peas’ under the heading `food’ . Likewise,

Betty, noticing that Albert has written green, must write

`peas’ under her `food’ heading. However they now have a

problem. If they are both asked the food question (and they

have no way of knowing whether this will happen) they will

both answer peas. But this will violate (c). This method of

exchanging instruction codes simply cannot work.

The scientists worry that despite their eŒorts, the twins

have some secret way of communicating. If they had been

able to sneak in mobile phones for example then they could

successfully satisfy the above rules. Albert could simply

phone Betty if he has been asked the food question and

then she would know not to answer peas if she is also asked

the food question. Indeed, the more the scientists discuss

this, the more they are convinced that the twins are

communicating. To prevent this they obtain a much longer

stage. So long that it takes light several minutes to

transverse the stage. They reason that since any signals

used for communication must travel at a speed less than or

equal to that of light, they can prevent the twins from

communicating by asking them the questions simulta-

neously at opposite ends of this rather long stage. This way

each twin would have to answer their question before they

could possibly ® nd out what the other twin had been asked.

The show goes on and after a while it is found that the

twins are still able to satisfy the above rules.

Could this happen? If it could it would seem to imply

that the twins had found a way of communicating faster

than light. Surely then we must conclude that this is

prohibited by physics (namely special relativity) and

therefore could not happen. But we would be wrong. In

fact, by employing quantum mechanics, Albert and Betty

could satisfy the above rules. Later I will show exactly how

this is possible. However, even though it is possible, Albert

and Betty are not actually able to send superluminal signals

to one another because there is an uncontrollable random-

ness in the answers they will give if they use a quantum

mechanical state to decide what these should be. This

means special relativity is safe (using the words of Shimony

it is probably better to say there is a `peaceful coexistence’

between quantum mechanics and special relativity [3]).

Before discussing this non-locality I will introduce some

basic quantum mechanics.

3. Some basic quantum mechanics

In fact the quantum mechanics required is rather simple. In

any physical theory it is necessary to have a way of

describing the physical systems that the theory treats. In

quantum mechanics a system is described by a vector in a

complex linear vector space. In such a space two vectors

can each be multiplied by a complex number and added

together to give a new vector in the space. Actually, in the

examples we will consider, real numbers will be su� cient.

We illustrate our remarks by considering the polarization

degree of freedom of photons. A photon with vertical

polarization will be represented by the vector |?ñ . (This

notation | ñ is standard in quantum mechanics for repre-

senting vectors and was introduced by Dirac. Readers

unfamiliar with this notation should not be put oŒ. We

could just as well use a standard vector notation like a.) A

photon with horizontal polarization will be represented by

the vector | <ñ . To ® nd out whether a photon has vertical

or horizontal polarization a calcite crystal can be used. This

crystal has an axis which can be orientated along say the

vertical direction. Then a vertically polarized photon

incident on the crystal will come out along the unde¯ ected

path (called the ordinary path) and a horizontally polarized

photon will come out along the de¯ ected path (called the

extraordinary path). With such a crystal it is possible to

distinguish with certainty between photons which are either

vertically or horizontally polarized. States which can be

distinguished with certainty are said to be orthogonal. (It so

happens that orthogonally polarized photons correspond

to orthogonal directions in space, e.g. vertical and

horizontal. With spin-half particles this is not the case.) A

photon with linear polarization along a direction h to the

vertical (see ® gure 1) is represented by the state

| h ñ 5 cos ( h ) |?ñ 1 sin ( h ) | <ñ . (1)

A photon with orthogonal polarization to this has the state

| h ^ ñ 5 sin ( h ) |?ñ 2 cos ( h ) | <ñ . (2)

By orientating the axis of a calcite crystal at angle h to the

vertical it would be possible to distinguish photons

prepared in one or the other of these two states. It is

possible to invert equations (1) and (2) to obtain

|?ñ 5 cos ( h ) | h ñ 1 sin ( h ) | h ^ ñ , (3)

| <ñ 5 sin ( h ) | h ñ 2 cos ( h ) | h ^ ñ , (4)

These equations will be useful later.

Imagine now that we have two photons which have been

prepared separately and have not interacted. Photon 1 has

been prepared in the state | h ñ 1 and photon 2 has been

prepared in the state | u ñ 2. The combined state of the system

is represented by the vector

| h ñ 1| u ñ 2 . (5)

Such a state is called a product state since it is possible to

represent the state of the combined system of the two

particles by a simple product of states of each of the
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individual particles. However, if the photons have inter-

acted or been prepared in the same process then, in general,

the state of the two photons cannot be written as a product.

Rather it must be written as a sum of product terms. For

example, representing the state of the combined system by

the single vector | ñ , we could have

| ñ 5 a| h ñ 1| u ñ 2 1 b| h ¢ ñ 1| u ¢ ñ 2 , (6)

where a and b are complex numbers. When the state cannot

be written as a product it is called an entangled state. It is

entangled states that have the almost magical properties

that can lead to apparent faster than light in¯ uences. When

two particles are in an entangled state they appear to

continue to talk to each other even after they have ® nished

interacting directly.

To complete this basic introduction to quantum

mechanics I want to explain how to calculate probabilities

of getting certain outcomes when measurements are made,

for example, using calcite crystals. Suppose a photon is

prepared with linear polarization u . This means that its

state is

| u ñ 5 cos ( u ) |?ñ 1 sin ( u ) | <ñ . (7)

Now consider letting this photon pass through a calcite

crystal orientated at an angle h (see ® gure 2). This photon

might go into the ordinary channel which corresponds to

the state | h ñ or it might go into the extraordinary channel

which corresponds to the state | h ^ ñ . Using equations (3)

and (4) we can write

| u ñ 5 cos ( u ) [cos ( h ) | h ñ 1 sin ( h ) | h ^ ñ ]

1 sin ( u ) [sin ( h ) | h ñ 2 cos ( h ) | h ^ ñ ]
(8)

rearranging this gives

| u ñ 5 cos ( h 2 u ) | h ñ 1 sin ( h 2 u ) | h ^ ñ . (9)

The coe� cient in front of the | h ñ term is the probability

amplitude associated with the state | h ñ . According to the

rules of quantum mechanics the probability that the photon

will be detected in the ordinary channel is given by the

square of the modulus of this probability amplitude, i.e.

cos2 ( h 2 u ) . The probability that it will be detected in the

extraordinary channel is given by sin2
( h 2 u ) . Thus, we see

the trick is to write down the state using the orthogonal

states that correspond to the measurement being per-

formed. The probabilities are given by taking the squares of

moduli of the corresponding coe� cients. It is important

that the probabilities add up to one. This is arranged by

normalizing the state so that the length of the vector is

equal to 1.

We will now spell out how to calculate probabilities for

two photons. Thus, imagine that two photons are prepared

in the state

| ñ 5 a |?ñ 1| <ñ 2 2 b | <ñ 1|?ñ 2 . (10)

The state must be normalized to length 1. This means

that

| a |2 1 | b |2 5 1 . (11)

We let the two photons separate to some large distance

and then perform measurements of polarization on each

one using calcite crystals orientated at angle h for photon

1 and u for photon 2 (see ® gure 3). There are two possible

outcomes at each end making four possible outcomes in

total. To calculate the probabilities of these we ® rst

rewrite | ñ in terms of | h ñ 1, | h ^ ñ 1, | u ñ 2 and | u ^ ñ 2. Using

(3) and (4) as before we obtain

Figure 2. The eŒect of a calcite crystal orientated with its axis

at an angle h . The ordinary ray corresponds to the state | h ñ while

the extraordinary ray corresponds to the state | h ^ ñ .

Figure 1. The state vector of a photon polarized at angle h to

the vertical can be resolved into vertical and horizontal

polarization vectors.
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| ñ 5 a [cos ( h ) | h ñ 1 1 sin ( h ) | h ^ ñ 1][sin ( u ) | u ñ 2

2 cos ( u ) | u ^ ñ 2] 2 b [sin ( h ) | h ñ 1

2 cos ( h ) | h ^ ñ 1][cos ( u ) | u ñ 2 1 sin ( u ) | u ^ ñ 2] .

(12)

Rearranging this we obtain

| ñ 5 [a cos ( h ) sin ( u ) 2 b sin ( h ) cos ( u ) ]| h ñ 1| u ñ 2

1 [ a cos ( h ) cos ( u ) 2 b sin ( h ) sin ( u ) ]| h ñ 1| u
^ ñ 2

1 [ a sin ( h ) sin ( u ) 1 b cos ( h ) cos ( u ) ]| h ^ ñ 1| u ñ 2

1 [ 2 a sin ( h ) cos ( u ) 1 b cos ( h ) sin ( u ) ]| h ^ ñ 1| u
^ ñ 2 .

(13)

From this equation it is now very easy to write down the

probabilities of each of the four possible outcomes. For

example, the probability of photon 1 being detected in the

ordinary channel (corresponding to | h ñ 1) and photon 2

being detected in the extraordinary channel (correspond-

ing to | u ^ ñ 2) is given by the square of the modulus of the

probability amplitude of the second term:

prob ( h , u ^
) 5 | a cos ( h ) cos ( u ) 2 b sin ( h ) sin ( u ) |2 .

(14)

Probabilities for the other outcomes are given by taking

the square of the modulus of the coe� cient in front of the

corresponding term. This is all the technical knowledge

required to understand the rest of this article.

4. Some early concerns about quantum mechanics

We will take a historical approach to the subject. After the

rules of quantum theory had been established in the late

1920s, people began to worry about their physical

interpretation. At the 1927 Solvay conference Einstein

presented an argument [1] which showed that either

quantum mechanics is incomplete or it is non-local. A

simpli® ed version of this argument is as follows. A box has

a particle in it. The box is divided by means of partitions

and split into two separate boxes (A and B ). These two

boxes are then taken to two remote places (see ® gure 4).

The state of the system at this stage can be written

| w ñ 5
1

21 /2
( |A ñ 1 |B ñ ) (15)

where |A ñ (|B ñ ) denotes that the particle is in box A (B ).

This state vector illustrates the superposition principle.

Generally, when we do not know which of two possibilities

has actually happened, the state is written as a sum of the

corresponding vectors. Now box A is opened. There is a

50% chance that the particle will be found there. If the

particle is found there then we know that it will not be

found in the other box. There are two ways we can think

about this thought experiment: (i) the particle is actually

always in one of the two boxes (box A say). When box A is

opened it is simply discovered there. If we take this

approach then we must believe that there is some additional

information about the system, namely which box the

particle is in for a particular run of the experiment, that is

not included in the state description given above in (15).

That is to say we must accept that the quantum mechanical

description of the state is incomplete. Alternatively we can

assert that (15) does represent a complete description of the

state of aŒairs. Then we tell the second story: (ii) there is no

fact of the matter as to which box the particle is in before

one of them is opened. The moment box A is opened it

becomes the case that the particle is in box A (assuming it is

found to be there). If we believe this then there must be a

non-local in¯ uence from box A to box B carrying the

information that since the particle has been found in box A

it cannot also be found in box B . Without such a non-local

in¯ uence it could happen that when box B is opened the

particle is also found there and one particle should not be

found to be in two places at the same time. Both stories are

problematic. Either we must accept that quantum me-

chanics is incomplete, or we must accept that there are non-

local in¯ uences.

This dilemma was presented again later in a diŒerent

form in a very famous paper by Einstein, Podolsky, and

Rosen (EPR) in 1935 [4]. This paper is very easy to read

and I strongly recommend it to the reader. The example

considered by EPR consisted of two particles in an

entangled state involving their positions and momenta

Figure 3. Two entangled photons, 1 and 2, are emitted from the

source and impinge on calcite crystals orientated at angles h and

u respectively.

Figure 4. (i) A particle is placed into a box which is then

partitioned into two boxes. (ii) The two boxes are separated to a

great distance. Is the particle always in one of the two boxes or is

it the case that there is no fact of the matter as to which box the

particle is in until one of them is opened?
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but, following Bohm [5], we will illustrate their argument

by considering two photons in the following polarization

entangled state (actually Bohm considered two spin-half

particles but two photons are equivalent for our

purposes):

| ñ 5
1

21/2
( |?ñ 1| <ñ 2 2 | <ñ 1|?ñ 2) . (16)

You can easily verify that this state is rotationally

invariant in form in the sense that if it is written in terms

of the vectors | h ñ 1,2 and | h ^ ñ 1,2 then it has the form

| ñ 5
1

21 /2
( | h ñ 1| h

^ ñ 2 2 | h ^ ñ 1| h ñ 2) . (17)

This means that if a measurement of polarization is made

on both photons along the same direction h and one

photon is detected in the ordinary path, the other photon

will certainly be detected in the extraordinary path and

vice versa (since the terms | h ñ 1| h ñ 2 and | h ^ ñ 1| h
^ ñ 2 have

zero amplitude). This is like the particle in one of two

boxes. We have similar choice. We can imagine either that

the quantum description (17) is complete and hence when

a measurement is made on photon 1 there is a non-local

in¯ uence letting photon 2 know the outcome. Or we can

imagine that before the two photons separate they agree

between themselves that should the polarization be

measured along the direction h one photon should come

out in the h channel and the other should come out in the

h ^ channel so we preserve locality but now the quantum

state is not taken to be a complete description of what is

going on.

5. Enter John S. Bell

The second of these two options amounts to the

photons exchanging an instruction code before separat-

ing specifying how they will behave when a given

measurement is made. Such instruction codes go beyond

the normal quantum state description of a system and

are usually called hidden variables. We will see that this

attempt to rescue locality by introducing hidden vari-

ables fails when any attempt is made to put it into

action (indeed, Albert and Betty’ s trick depends on its

failure). An early hint that it would fail was provided

by the de Broglie Bohm interpretation of quantum

mechanics. At the 1927 Solvay conference de Broglie [6]

had put forward an interpretation of quantum me-

chanics which explicitly involved the introduction of

hidden variables. This interpretation was rediscovered

and further developed by Bohm in 1952 [7]. One feature

of this interpretation is that it is explicitly non-local.

Indeed, it was this feature that lead Einstein to reject

the interpretation. However, John Bell asked if this non-

locality was a necessary feature of any attempt to

supplement quantum mechanics with hidden variables.

He was subsequently (in 1964) able to prove that it is

[2].

Bell considered the state in equation (16) (actually, like

Bohm, Bell also considered two spin-half particles but,

again, two photons are equivalent for our purposes) which

is the same as equation (10) if we put a 5 b 5 22 1/2.

Further, he de® ned the correlation function

E ( h , u ) 5 Average (A ( h )B ( u ) ) , (18)

where A ( h ) 5 1 1 if photon one comes out in the ordinary

channel (corresponding to | h ñ 1) and A ( h ) 5 2 1 if it comes

out in the extraordinary channel (corresponding to | h ^ ñ 1)

and where B ( u ) is de® ned similarly for photon 2 (as in

® gure 3). The average is taken over a large number of

runs of the experiment. The probabilities prob ( h , u ) and

prob ( h ^ , u ^ ) contribute to A ( h )B ( h ) 5 1 1 and the

probabilities prob ( h , u ^ ) and prob ( h ^ , u ) contribute to

A ( h )B ( h ) 5 2 1. Hence, the correlation function de® ned

above is equal to

E ( h , u ) 5 prob ( h , u ) 1 prob ( h
^

, u ^
)

2 prob ( h , u ^
) 2 prob ( h

^
, u ) .

(19)

The quantum predictions for these probabilities can be

read oŒfrom equation (13) (putting a 5 b ). After a little

trigonometric manipulation this gives

E ( h , u ) 5 2 cos [2( h 2 u ) ] . (20)

Now consider thinking about this experiment from the

point of view of locality. Imagine that before the two

photons separate they exchange an instruction code as we

discussed above. This instruction code can be represented

by ¸ and are called hidden variables. These hidden

variables can be anything we want. They can, and in

general will, be diŒerent from one run of the experiment

to the next. We imagine that, over a large number of runs

of the experiment, they are distributed according to some

probability density function q (¸) . Since this is a prob-

ability density, it has the property

q ( )̧ d¸ 5 1 , (21)

where the integration is over the space of .̧ The values of

A ( h ) and B ( u ) for a given run of the experiment will be

determined by ¸ so we can write the result functions

A ( h , ¸) and B ( u , )̧ . Note in particular that these result

functions do not depend on the setting at the other end of

the experiment. This is equivalent to assuming that Albert

and Betty are not allowed to communicate and forms the

basis of the locality assumption. Further note that the

distribution q ( )̧ does not depend on h 1,2. This also forms

part of the locality assumption and is equivalent to the

fact that Albert and Betty do not know what questions

Spooky action at a distance in quantum mechanics 423
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they are going to be asked. It follows that in a local

hidden variable theory the correlation function can be

written as

E ( h , u ) 5 A ( h , ¸)B ( u , ¸) q (¸) d¸ . (22)

We will see that this form for the correlation function is

inconsistent with the quantum result (20).

First we derive a simple mathematical result. Assume

x1, x ¢1, x2, x ¢2 5 ±1. Then

s 5 x1x2 1 x1x ¢2 1 x ¢1x2 2 x ¢1x ¢2 5 ±2 . (23)

This is most easily seen by writing

s 5 x1(x2 1 x ¢2) 1 x ¢1(x2 2 x ¢2) . (24)

One of the two expressions in brackets must be zero and it

follows that s 5 ±2.

Now we put x1 5 A ( h , )̧ , x ¢1 5 A ( h ¢ , ¸) , x2 5 B ( u , ¸)

and x ¢2 5 B ( u ¢ , )̧ into (23), multiply by q (¸) and then

integrate over .̧ This gives

2 2 £ E ( h , u ) 1 E ( h , u ¢ ) 1 E ( h ¢ , u ) 2 E ( h ¢ , u ¢ ) £ 1 2 .

(25)

These are called Bell inequalities (actually this version of

Bell inequalities were derived by Clauser e t a l. [8]). They

express a constraint that all local hidden variable theories

must obey. Now use h 5 0s , h ¢ 5 45s , u 5 22.5s , and

u ¢ 5 2 22.5s
as shown in ® gure 5. If these values are

inserted into (25) using the quantum mechanical formula

(20) then we obtain

S 5 E ( h , u ) 1 E ( h , u ¢ ) 1 E ( h ¢ , u ) 2 E ( h ¢ , u ¢ ) 5 2(21/2) .

(26)

This violates the Bell inequalities which means that the

quantum predictions cannot be reproduced by a local

hidden variable model. This result is quite astonishing.

What it means is that there must be a non-local in¯ uence

passing between the two particles. Indeed, this is so

astonishing that many people did not believe that quantum

mechanics could be right. It was necessary to do experi-

ments. These will be described later.

6. Proofs without inequalities

A number of more direct proofs of quantum non-locality

without appeal to inequalities were discovered in the 1980s

and 1990s. The ® rst of these was due to Heywood and

Redhead [9] which pertained to two spin one particles.

Their proof was simpli® ed by Stairs [10] and further

simpli® ed by Brown and Svetlichny [11] although it is still

rather complicated. A much simpler proof which we will

present below was due to Greenberger, Horne and Zeilinger

(GHZ) [12] and employed three or more particles. In 1991,

motivated by the proof of GHZ I came up with a rather

simple proof [13] for two photons (or spin half particles). It

is this that forms the basis of the trick of Albert and Betty

and it will also be presented below. More recently, Penrose

[14] has come up with another example which uses two spin

one particle like that of Heywood and Redhead.

7. The Greenberger± Horne± Zeilinger proof

We will now present the Greenberger± Horne± Zeilinger

(GHZ) [12] proof of non-locality without inequalities. Their

proof requires more than two particles. We will give a

version of the argument employing three photons [15]. We

will use the notation

| 1 ñ º |?ñ | 2 ñ º | <ñ (27)

for vertically and horizontally polarized states and

| 1 ¢ ñ º | h 5 1 45s ñ 5
1

21/2
( | 1 ñ 1 | 2 ñ ) , (28)

| 2 ¢ ñ º | h 5 2 45s ñ 5
1

21/2
( | 1 ñ 2 | 2 ñ ) , (29)

for states polarized at ±45s to the vertical (we have used

equations (1) and (2)).

Before going on to the main result we mention that the

following equations follow from (28) and (29)

1
21 /2

( | 1 ñ 2| 1 ñ 3 2 | 2 ñ 2| 2 ñ 3) 5
1

21/2
( | 1 ¢ ñ 2| 2 ¢ ñ 3 1 | 2 ¢ ñ 2| 1 ¢ ñ 3) ,

(30)

1
21 /2

( | 1 ñ 2| 2 ñ 3 1 | 2 ñ 2| 1 ñ 3) 5
1

21/2
( | 1 ¢ ñ 2| 1 ¢ ñ 3 2 | 2 ¢ ñ 2| 2 ¢ ñ 3) .

(31)Figure 5. The settings for the polarization measurements used

to show a violation of Bell’s inequalities.
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These results will be used later (note, we have written them

down for photons 2 and 3 since this example will be used

later but the result holds equally for any other pair of

photons).

The three photons are prepared in a source in the state

| ñ 5
1

41 /2
( | 1 ñ 1| 1 ñ 2| 1 ñ 3 2 | 1 ñ 1| 2 ñ 2| 2 ñ 3

2 | 2 ñ 1| 1 ñ 2| 2 ñ 3 2 | 2 ñ 1| 2 ñ 2| 1 ñ 3) .

(32)

The photons are allowed to propagate to three separate

places where measurements of polarization are made on

each photon as shown in ® gure 6. At each of these three

locations a random choice is made to measure either the

polarization along the vertical and horizontal directions or

along the ±45s
directions. Let the polarization of photon 1

be measured along a direction at angle h to the vertical. We

set A ( h ) 5 1 1 if it is detected in the h channel and

A ( h ) 5 2 1 if it is detected in the h ^ channel. The quantities

B ( u ) and C ( v ) are de® ned in a similar way for photons 2

and 3 for measurements of polarization at angles u and v

to the vertical respectively. Consider the case in

which (A (0s
) , B (0s

) , C (0s
)) are measured. It follows from

(32) that the only possibilities for the results of these

three measurements are ( 1 1, 1 1, 1 1) , ( 1 1, 2 1, 2 1) ,

( 2 1, 1 1, 2 1) , ( 2 1, 2 1, 1 1) . The product of the three

outcomes is + 1 in each case. Hence we can say that

A (0s
)B (0s

)C (0s
) 5 1 1 . (33)

Now we will consider the case in which A (0s
) is measured

on photon 1 and B (45s
) and C (45s

) are measured on

photons 2 and 3 respectively. First notice that (32) can be

written

| ñ 5
1

21 /2
| 1 ñ 1[

1
21 /2

( | 1 ñ 2| 1 ñ 3 2 | 2 ñ 2| 2 ñ 3) ]

2
1

21 /2
| 2 ñ 1[

1
21 /2

( | 1 ñ 2| 2 ñ 3 1 | 2 ñ 2| 1 ñ 3) ] .

(34)

Using equations (30) and (31) we can write this as

| ñ 5
1

21 /2
| 1 ñ 1[

1
21 /2

( | 1 ¢ ñ 2| 2 ¢ ñ 3 1 | 2 ¢ ñ 2| 1 ¢ ñ 3) ]

2
1

21 /2
| 2 ñ 1[

1
21/2

( | 1 ¢ ñ 2| 1 ¢ ñ 3 2 | 2 ¢ ñ 2| 2 ¢ ñ 3) ] .

(35)

This can be multiplied out to give

| ñ 5
1

41 /2
( | 1 ñ 1| 1 ¢ ñ 2| 2 ¢ ñ 3 1 | 1 ñ 1| 2 ¢ ñ 2| 1 ¢ ñ 3

2 | 2 ñ 1| 1 ¢ ñ 2| 1 ¢ ñ 3 1 | 2 ñ 1| 2 ¢ ñ 2| 2 ¢ ñ 3) .

(36)

Hence when the measurements (A (0s
) , B (45s

) , C (45s
)) are

made the possible results are ( 1 1, 1 1, 2 1) , ( 1 1, 2 1, 1 1) ,

( 2 1, 1 1, 1 1) , ( 2 1, 2 1, 2 1) . In each case the product of the

three outcomes is equal to 2 1. That is

A (0s
)B (45s

)C (45s
) 5 2 1 . (37)

By symmetry two further properties also hold

A (45s
)B (0s

)C (45s
) 5 2 1 , (38)

A (45s
)B (45s

)C (0s
) 5 2 1 . (39)

We can now think about how to reproduce these properties

in a local hidden variable model. As before we can

introduce the hidden variables ¸ which represent the

instruction code that is shared by the photons before

leaving the source. Each result will be determined by a

result function like A (0s , ¸) . It follows from equations (36),

(37), (38) and (39) that

A (0s
, ¸)B (0s

, ¸)C (0s
, ¸) 5 1 1 , (40)

A (0s
, ¸)B (45s

, ¸)C (45s
, )̧ 5 2 1 , (41)

A (45s
, ¸)B (0s

, ¸)C (45s
, )̧ 5 2 1 , (42)

A (45s
, ¸)B (45s

, ¸)C (0s
, )̧ 5 2 1 . (43)

Now consider multiplying these four equations. The

product of the right hand sides is 2 1. However, on the

left hand side each quantity appears twice. Since each

quantity is equal to ±1 the product of the left hand sides is

Figure 6 The apparatus used in the Greenberger± Horne±

Zeilinger argument. Three photons prepared in a particular

state are emitted from the source. Measurements of polarization

are made on each photon with the corresponding calcite crystal

orientated either at
s

or
s
.
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1 1. This gives a direct contradiction between the predic-

tions of quantum theory and local hidden variable models.

The above four equations simply cannot all be true. It is

worth noting that dropping the locality assumption

removes the contradiction. For example consider the

quantity A (0s , ¸) in equations (40) and (41). If this quantity

is allowed to depend on what is being measured on the

other two photons then it could take diŒerent values in (40)

and (41). This would remove the contradiction.

8. How Albert and Betty’s trick works

So far we have not explained how Albert and Betty did the

trick discussed at the beginning of this article. In 1992,

motivated by the GHZ argument and employing some

arguments from a paper by Elitzur and Vaidman [16], I

showed how it is possible to realize a simple two particle

argument for non-locality without inequalities [13]. The

correlations are exactly those needed in Albert and Betty’ s

trick. We will now describe exactly what Albert and Betty

need to do. They require two photons 1 and 2. Each photon

lives in a two-dimensional vector space spanned by the

orthogonal vectors |?ñ and | <ñ . This vector space can also

be spanned by two diŒerently orientated orthogonal

polarization vectors which we will call |r ñ and |g ñ
corresponding to `red’ and `green’ . Actually, it does not

matter which way they are orientated, so long as they are

orthogonal. Now we introduce a further two orthogonal

vectors |p ñ and |c ñ (corresponding to `peas’ and `carrots’ )

which are orientated at some angle to |r ñ and |g ñ (see ® gure

7) such that

|r ñ 5 a |p ñ 1 b|c ñ , (44)

|g ñ 5 b|p ñ 2 a|c ñ , (45)

where we are taking the coe� cients a and b to be real

numbers. The vectors are taken to be normalized so that

a2 1 b2 5 1. These two equations can be inverted to give

|p ñ 5 a |r ñ 1 b|g ñ , (46)

|c ñ 5 b|r ñ 2 a |g ñ . (47)

When they meet at the centre of the stage Albert and Betty

put their two photons in the entangled state

| w ñ 5 N ( |r ñ 1|r ñ 2 2 a2|p ñ 1|p ñ 2) , (48)

where N is a normalization constant. They then each carry

their photon to opposite ends of the stage. When they get

there they will be asked a question. If asked the colour

question they make a measurement of polarization along

the |r ñ , |g ñ basis. If the outcome is in the |r ñ channel they

answer red and if the outcome is in the |g ñ channel they

answer green. If asked the food question they make a

measurement of polarization along the |p ñ , |c ñ basis. If the

outcome is in the |p ñ channel they answer peas and if the

outcome is in the |c ñ channel they answer carrots. We will

now see that their answers will be in accordance with the

patterns speci® ed earlier. Consider the case where both

Albert and Betty are asked the colour question. They both

make measurements on the r , g bases. We can insert

equation (46) into (48) to obtain

| w ñ 5 N ( |r ñ 1|r ñ 2 2 a2
(a|r ñ 1 1 b|g ñ 1) (a|r ñ 2 1 b|g ñ 2)) . (49)

We can see that the coe� cient in front of the |g ñ 1|g ñ 2 term is

Na2b2. This means that the probability of both Albert and

Betty answering green is non-zero (it is not di� cult to show

that the maximum value of this probability is about 9% ).

This satis® es (a) that on those evenings when both twins are

asked the colour question they sometimes both give the

answer green.

Now consider the case where Albert is asked the colour

question and Betty is asked the food question. We can

substitute (46) into (48) giving

| w ñ 5 N ( |r ñ 1|r ñ 2 2 a
2
(a |r ñ 1 1 b|g ñ 1) |p ñ 2) . (50)

We see that the only term containing |g ñ 1 is the |g ñ 1|p ñ 2.

There is no |g ñ 1|c ñ 2 term. This means that the probability of

Albert answering green and Betty answering carrots is zero.

Hence, if Albert answers green then Betty will answer peas.

By symmetry it follows that if Betty is asked the colour

question and answers green and Bob is asked the food

question then he will answer peas. This means that property

(b) is satis ® ed.

Finally, consider those evenings on which both twins are

asked the food question. Substitute (44) into (48):

| w ñ 5 N ((a |p ñ 1 1 b|c ñ 1) (a|p ñ 2 1 b|c ñ 2) 2 a2|p ñ 1|p ñ 2) . (51)

Notice that the |p ñ 1|p ñ 2 term cancels. That is there is zero

probability of both twins answering peas on the same

Figure 7. The relationship between the |p ñ and |c ñ polarization

vectors and the |r ñ and |g ñ polarization vectors.
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evening. This satis® es property (c) and so we have

demonstrated that the twins are able to do the trick

described earlier.

9. Real experiments

One response to Bell’ s theorem is that quantum mechanics

is wrongÐ at least in those situations where it predicts non-

locality. This is an empirical matter and indeed after Bell’ s

paper was published it was very quickly realized that

experiments were necessary. To do this the quantity S

de® ned in equation (26) must be measured. If S were found

to have magnitude greater than 2 this would demonstrate

that nature cannot be described by a local hidden variable

model. However, there is a problem which was ® rst

appreciated by Pearle [17]. The detectors used in the

experiment will have some e� ciency g . In the derivation of

the quantum mechanical result (20) we assumed that the

detectors are ideal so that g 5 1. However, this is

unrealistic in a real experiment. If we take into account

the e� ciency of the detectors then we obtain

E ( h , u ) 5 2 g
2 cos [2( h 2 u ) ] (52)

since each of the probabilities in equation (19) is multiplied

by g 2. This gives S 5 2(21 /2)g 2. The Bell inequalities are

violated when S > 2 which requires

g > 22 1/4 » 84% . (53)

This e� ciency must take into account not only the detector

ine� ciency but also other ine� ciencies inherent in the

experiment such as transmission ine� ciency through the

polarizer and the collection ine� ciencies of the optical

elements (not all the photons emitted from the source will

enter the optical elements and so cannot arrive at the

detectors). By considering diŒerent quantum states Eber-

hard [18] has shown that it is possible to reduce the

e� ciency required to 67% . Nevertheless, 67% is still a very

high e� ciency to achieve and to date no experiments to test

the Bell inequalities have been performed with such high

e� ciency.

We can also think about this in the context of the Albert

and Betty trick discussed above. In their case, having

e� ciency less than 100% is equivalent to allowing them to

refuse to answer the questions put to them on some

occasions. They could refuse to answer questions when they

can deduce that answering them could lead to a contra-

diction of one of the properties (a) ± (c). In this way it might

be possible to satisfy the properties (a) ± (c) in a local way in

that proportion of cases where they both answer the

questions. For this to be successful they would have to

refuse to answer for at least a certain proportion of the

questions.

To get round this problem an untestable supplementary

assumption was introduced (for a review see [19]). The

basic idea of this assumption is that the detectors sample

the ensemble in a fair way so that those events in which

both photons are detected are representative of the whole

ensemble. This is like saying Albert and Betty decide

randomly whether or not to answer questions by tossing an

appropriately biased coin just after they have been asked

the question, such that this cannot form the basis of any

strategy. With this assumption we can rede® ne the

correlation function E to be the average value of

A ( h )B ( u ) over those events in which both photons are

detected. This is equivalent to renormalizing the original

de® nition so that now we have

E ( h , u ) 5
Average (A ( h )B ( u ))

Average (N 1N 2)
, (54)

where N 1 is the total number of photons (1 or 0) detected at

end 1 and N2 is de® ned similarly. Note that

Average (N1N 2) 5 prob ( h , u ) 1 prob ( h
^ , u ^

)

1 prob ( h , u ^
) 1 prob ( h

^ , u ) .
(55)

This means that when ine� ciencies are considered, the

factor g 2 will enter into both the numerator and the

denominator of the RHS of (54) so that it cancels. Hence

we recover the prediction (20). Thus, with the fair sampling

assumption the Bell inequalities will be violated by the

predictions of quantum mechanics regardless of how low

the e� ciency is. All the experiments performed to date

make use of the fair sampling assumption.

Another consideration pointed out by Bell in his original

paper is that the choice of which measurement to perform

should be made while the photons are in ¯ ight to prevent

any signals from one end to the other carrying the

information of which measurement is to be performed.

Most experiments that have been performed are one to two

metres long (the length of a typical optical table). To switch

between two settings of a polarizer in the time it takes light

to travel one metre is very di� cult. Nevertheless, one longer

experiment has accomplished this though not in an entirely

successful way.

The ® rst experiment was performed in 1972 by Freedman

and Clauser [20]. They employed an atomic cascade. Atoms

were excited in such a way that when they decayed two

photons would be produced that were entangled with

respect to their polarizations. The experiment violated the

Bell inequalities by 6 standard deviations. A number of

further experiments employing atomic cascades and other

methods were performed in the 1970s and most of them

violated the Bell inequalities as expected [21]. Two

experiments did not violate the inequalities [22]. Never-

theless, the experiments were overwhelmingly in favour of

quantum mechanics. For a review of experiments up to

1978 see [19]. Further experiments by Aspect and co-

workers [23] in Orsay in the early 1980s also employing
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atomic cascades provided further evidence in favour of

quantum mechanics. The last of their experiments was 12 m

long and employed an active switching device so that the

choice of measurement was decided while the photon was

in ¯ ight. Unfortunately, as was subsequently pointed out

by Zeilinger [24], the time period of the switching was

chosen such that the switch was back to its original value

by the time the photon arrived at the polarizers.

A new generation of experiments started with the

discovery of a phenomenon known as parametric down

conversion (PMDC). In PMDC a special type of crystal

with certain nonlinear optical properties is illuminated by a

laser. A small proportion of the photons in the laser beam

are `down converted’ into pairs of photons. These pairs of

photons can be used to prepare an entangled state. The

advantage of this source of entangled photons over atomic

cascades are considerable. First, the directions in which the

two photons go is well correlated. Secondly, the experiment

is considerably easier to set up. Many experiments to test

Bell’ s inequalities employing PMDC have been performed

and have shown, as expected, a violation (for a very

incomplete list of references see [25]).

To date, no experiment has been performed to test the

GHZ correlation because of the di� culty of preparing three

photon states although experimental techniques that could

lead to an experiment are now being mastered [26] and an

experiment is likely to be performed soon. A number of

experiments [27] have been performed to test the predictions

of quantum mechanics used by Albert and Betty. These

experiments agree very well with quantum mechanics.

A very long experiment over 10 km was recently

performed by Tittel e t a l. [28]. This employed optical ® bres

laid down by a telephone company. The source was in

Geneva, and the measurements were made in two small

villages, Bellevue and Bernex, nearby. Again the Bell

inequalities were violated.

The interpretation of all these experiments, that they

demonstrate the impossibility of local hidden variable

models, depends on believing the fair sampling assumption.

Many people question this fair sampling assumption.

Indeed, people have shown how it is possible to construct

local hidden variable models that can reproduce all the

results of performed experiments but which do violate the

fair sampling assumption. Presently a number of experi-

mental groups around the world are working towards an

experiment with su� ciently high e� ciency that the Bell

inequalities are violated directly without appeal to this

assumption. Given the success of quantum mechanics

generally it seems overridingly likely that these experiments

will agree with quantum mechanics and violate the Bell

inequalities. Nevertheless, opinions formed on such a basis

are no substitute for real experimental data. I, for one, am

looking forward to the day when this matter is ® nally

settled experimentally.
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